认识微服务

服务架构演变

单体架构

单体架构:将业务中的所有功能集合在一个项目中开发,打包成一个包部署

优点:

  • 架构简单
  • 部署成本低

缺点:

  • 耦合度高

image-20240902152745543

分布式架构

分布式架构:根据业务功能对系统进行拆分,每个业务模块作为独立项目开发,称为一个服务

image-20240902153217172

优点:

  • 降低服务耦合度
  • 有利于服务升级扩展

缺点:

  • 服务调用关系错综复杂

分布式架构虽然降低了服务耦合,但是服务拆分时也有很多问题需要思考:

  • 服务拆分的粒度如何界定?
  • 服务之间如何调用?
  • 服务的调用关系如何管理?
  • 服务之间的健康状态如何感知?

微服务

微服务:是一种经过良好架构设计的分布式架构方案,微服务架构特征:

  • 单一职责:微服务拆分粒度更小,每一个服务都对应唯一的业务能力,做到单一职责
  • 自治:团队独立、技术独立、数据独立,独立部署和交付
  • 面向服务:服务提供统一标准的接口,与语言和技术无关
  • 隔离性强:服务调用做好隔离、容错、降级,避免出现级联问题

image-20240902153944106

微服务的上述特性其实是在给分布式架构制定一个标准,进一步降低服务之间的耦合度,提供服务的独立性和灵活性。做到高内聚,低耦合。

因此,可以认为微服务是一种经过良好架构设计的分布式架构方案

国内知名的微服务技术:SpringCloud和阿里巴巴的Dubbo

image-20240902154714323

微服务技术对比

image-20240902155125109

企业需求

image-20240902155439665

SpringCloud

SpringCloud是目前国内使用最广泛的微服务框架。官网地址:https://spring.io/projects/spring-cloud。

SpringCloud集成了各种微服务功能组件,并基于SpringBoot实现了这些组件的自动装配,从而提供了良好的体验。

常见组件:

image-20240902155716327

另外,SpringCloud底层是依赖于SpringBoot的,并且有版本的兼容关系,如下:

image-20240902155830029

服务的拆分及远程调用

服务拆分原则

  • 不同微服务,不要重复开发相同业务
  • 微服务数据独立,不要访问其它微服务的数据库
  • 微服务可以将自己的业务暴露为接口,供其它微服务调用

image-20240902160136792

服务拆分实例

以cloud-demo为例,其结构如下:

image-20240902162137028

cloud-demo:父工程,管理依赖

  • order-service:订单微服务,负责订单相关业务
  • user-service:用户微服务,负责用户相关业务

要求:

  • 订单微服务和用户微服务都必须有各自的数据库,相互独立
  • 订单服务和用户服务都对外暴露Restful的接口
  • 订单服务如果需要查询用户信息,只能调用用户服务的Restful接口,不能查询用户数据库

导入sql

cloud-user表中初始数据如下:

image-20240902162310282

cloud-order表中初始数据如下:

image-20240902162316045

cloud-order表中持有cloud-user表中的id字段。

导入demo

该项目中的启动为不同的端口

image-20240902162540314

服务远程调用案例

在order-service服务中,有一个根据id查询订单的接口:

image-20240902162843694

根据id查询订单,返回值是Order对象,如图:

image-20240902162859903

其中的user为null

在user-service中有一个根据id查询用户的接口:

image-20240902162923609

查询的结果如图:

image-20240902162934239

案例需求

修改order-service中的根据id查询订单业务,要求在查询订单的同时,根据订单中包含的userId查询出用户信息,一起返回。

image-20240902163004374

因此,我们需要在order-service中 向user-service发起一个http的请求,调用http://localhost:8081/user/{userId}这个接口。

大概的步骤是这样的:

  • 注册一个RestTemplate的实例到Spring容器
  • 修改order-service服务中的OrderService类中的queryOrderById方法,根据Order对象中的userId查询User
  • 将查询的User填充到Order对象,一起返回

注册RestTemplate

在启动类/配置类中 注册RestTemplate

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
package cn.itcast.order;

import org.mybatis.spring.annotation.MapperScan;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.web.client.RestTemplate;

@MapperScan("cn.itcast.order.mapper")
@SpringBootApplication
public class OrderApplication {

public static void main(String[] args) {
SpringApplication.run(OrderApplication.class, args);
}

/**
* 注册RestTemplate
*/
@Bean
public RestTemplate restTemplate() {
return new RestTemplate();
}
}

实现远程调用

在Order的服务类中添加 发送远程调用的代码

image-20240902165028889

提供者和消费者

在服务调用关系中,会有两个不同的角色:

服务提供者:一次业务中,被其它微服务调用的服务。(提供接口给其它微服务)

服务消费者:一次业务中,调用其它微服务的服务。(调用其它微服务提供的接口)

image-20240902165227523

但是,服务提供者与服务消费者的角色并不是绝对的,而是相对于业务而言。

如果服务A调用了服务B,而服务B又调用了服务C,服务B的角色是什么?

  • 对于A调用B的业务而言:A是服务消费者,B是服务提供者
  • 对于B调用C的业务而言:B是服务消费者,C是服务提供者

因此,服务B既可以是服务提供者,也可以是服务消费者。

Eureka注册中心

假如我们的服务提供者user-service部署了多个实例,如图:

image-20240903152621553

大家思考几个问题:

  • order-service在发起远程调用的时候,该如何得知user-service实例的ip地址和端口?
  • 有多个user-service实例地址,order-service调用时该如何选择?
  • order-service如何得知某个user-service实例是否依然健康,是不是已经宕机?

Eureka的结构和作用

这些问题都需要利用SpringCloud中的注册中心来解决,其中最广为人知的注册中心就是Eureka,其结构如下:

image-20240903152719866

思考的解答。

1、order-service如何得知user-service实例地址?

获取地址信息的流程如下:

  • user-service服务实例启动后,将自己的信息注册到eureka-server(Eureka服务端)。这个叫服务注册
  • eureka-server保存服务名称到服务实例地址列表的映射关系
  • order-service根据服务名称,拉取实例地址列表。这个叫服务发现或服务拉取

2、order-service如何从多个user-service实例中选择具体的实例?

  • order-service从实例列表中利用负载均衡算法选中一个实例地址
  • 向该实例地址发起远程调用

3、order-service如何得知某个user-service实例是否依然健康,是不是已经宕机?

  • user-service会每隔一段时间(默认30秒)向eureka-server发起请求,报告自己状态,称为心跳
  • 当超过一定时间没有发送心跳时,eureka-server会认为微服务实例故障,将该实例从服务列表中剔除
  • order-service拉取服务时,就能将故障实例排除了

注意:一个微服务,既可以是服务提供者,又可以是服务消费者,因此eureka将服务注册、服务发现等功能统一封装到了eureka-client端

因此,接下来我们动手实践的步骤包括:

image-20240903152833456

搭建EurekaService

首先注册中心服务端:eureka-server,这必须是一个独立的微服务

创建eureka-server服务

在cloud-demo父工程下,创建一个子模块:

image-20240903154632812

填写模块信息:

image-20210713220857396

然后填写服务信息:

image-20210713221339022

引入eureka依赖

引入SpringCloud为eureka提供的starter依赖:

1
2
3
4
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>
</dependency>

编写启动类

给eureka-server服务编写一个启动类,一定要添加一个**@EnableEurekaServer**注解,开启eureka的注册中心功能:

1
2
3
4
5
6
7
8
9
10
11
12
13
package cn.itcast.eureka;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;

@EnableEurekaServer
@SpringBootApplication
public class EurekaApplication {
public static void main(String[] args) {
SpringApplication.run(EurekaApplication.class, args);
}
}

编写配置文件

1
2
3
4
5
6
7
8
9
server:
port: 10086
spring:
application:
name: eureka-server
eureka:
client:
service-url:
defaultZone: http://127.0.0.1:10086/eureka

启动服务

启动微服务,然后在浏览器访问:http://127.0.0.1:10086

image-20240903154936985

服务注册

下面,我们将user-service注册到eureka-server中去。 order-service同理

引入依赖

在user-service的pom文件中,引入下面的eureka-client依赖:

1
2
3
4
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

配置文件

在user-service中,修改application.yml文件,添加服务名称、eureka地址:

1
2
3
4
5
6
7
spring:
application:
name: userservice
eureka:
client:
service-url:
defaultZone: http://127.0.0.1:10086/eureka

启动多个user-service实例

为了演示一个服务有多个实例的场景,我们添加一个SpringBoot的启动配置,再启动一个user-service。

首先,复制原来的user-service启动配置:

image-20210713222656562

然后,在弹出的窗口中,填写信息:

image-20210713222757702

现在,SpringBoot窗口会出现两个user-service启动配置:

image-20210713222841951

启动 并查看 eureka-server管理页面

image-20240903155907945

服务发现

下面,我们将order-service的逻辑修改:向eureka-server拉取user-service的信息,实现服务发现。

引入依赖

服务发现、服务注册统一都封装在eureka-client依赖,因此这一步与服务注册时一致。

在order-service的pom文件中,引入下面的eureka-client依赖:

1
2
3
4
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

配置文件

服务发现也需要知道eureka地址,因此第二步与服务注册一致,都是配置eureka信息:

在order-service中,修改application.yml文件,添加服务名称、eureka地址:

1
2
3
4
5
6
7
spring:
application:
name: orderservice
eureka:
client:
service-url:
defaultZone: http://127.0.0.1:10086/eureka

服务拉取和负载均衡

最后,我们要去eureka-server中拉取user-service服务的实例列表,并且实现负载均衡。

不过这些动作不用我们去做,只需要添加一些注解即可。

在order-service的OrderApplication中,给RestTemplate这个Bean添加一个@LoadBalanced注解:

image-20240903161059979

修改order-service服务中的cn.itcast.order.service包下的OrderService类中的queryOrderById方法。修改访问的url路径,用服务名代替ip、端口:

image-20240903161125812

spring会自动帮助我们从eureka-server端,根据userservice这个服务名称,获取实例列表,而后完成负载均衡。

Ribbon负载均衡

上一节中,我们添加了@LoadBalanced注解,即可实现负载均衡功能,这是什么原理呢?

负载均衡原理

SpringCloud底层其实是利用了一个名为Ribbon的组件,来实现负载均衡功能的。

image-20240903165705781

那么我们发出的请求明明是http://userservice/user/1,怎么变成了http://localhost:8081的呢?

源码跟踪

为什么我们只输入了service名称就可以访问了呢?之前还要获取ip和端口。

显然有人帮我们根据service名称,获取到了服务实例的ip和端口。它就是LoadBalancerInterceptor,这个类会在对RestTemplate的请求进行拦截,然后从Eureka根据服务id获取服务列表,随后利用负载均衡算法得到真实的服务地址信息,替换服务id。

我们进行源码跟踪:

LoadBalancerIntercepor

image-20240903165822630

可以看到这里的intercept方法,拦截了用户的HttpRequest请求,然后做了几件事:

  • request.getURI():获取请求uri,本例中就是 http://user-service/user/8
  • originalUri.getHost():获取uri路径的主机名,其实就是服务id,user-service
  • this.loadBalancer.execute():处理服务id,和用户请求。

这里的this.loadBalancerLoadBalancerClient类型,我们继续跟入。

LoadBalancerClient

image-20240903165830858

继续跟入execute方法:

代码是这样的:

  • getLoadBalancer(serviceId):根据服务id获取ILoadBalancer,而ILoadBalancer会拿着服务id去eureka中获取服务列表并保存起来。
  • getServer(loadBalancer):利用内置的负载均衡算法,从服务列表中选择一个。本例中,可以看到获取了8082端口的服务

放行后,再次访问并跟踪,发现获取的是8081:

image-20240903165835467

果然实现了负载均衡。

负载均衡策略IRule

在刚才的代码中,可以看到获取服务使通过一个getServer方法来做负载均衡:

image-20240903165840299

我们继续跟入:

image-20240903165848736

继续跟踪源码chooseServer方法,发现这么一段代码:

image-20240903165853849

我们看看这个rule是谁:

image-20240903165857600

这里的rule默认值是一个RoundRobinRule,看类的介绍:

image-20240903165900829

这不就是轮询的意思嘛。

到这里,整个负载均衡的流程我们就清楚了。

总结

SpringCloudRibbon的底层采用了一个拦截器,拦截了RestTemplate发出的请求,对地址做了修改。用一幅图来总结一下:

image-20240903170110571

基本流程如下:

  • 拦截我们的RestTemplate请求http://userservice/user/1
  • RibbonLoadBalancerClient会从请求url中获取服务名称,也就是user-service
  • DynamicServerListLoadBalancer根据user-service到eureka拉取服务列表
  • eureka返回列表,localhost:8081、localhost:8082
  • IRule利用内置负载均衡规则,从列表中选择一个,例如localhost:8081
  • RibbonLoadBalancerClient修改请求地址,用localhost:8081替代userservice,得到http://localhost:8081/user/1,发起真实请求

负载均衡策略

负载均衡的规则都定义在IRule接口中,而IRule有很多不同的实现类:

image-20240903170217469

不同规则的含义如下:

内置负载均衡规则类 规则描述
RoundRobinRule 简单轮询服务列表来选择服务器。它是Ribbon默认的负载均衡规则。
AvailabilityFilteringRule 对以下两种服务器进行忽略: (1)在默认情况下,这台服务器如果3次连接失败,这台服务器就会被设置为“短路”状态。短路状态将持续30秒,如果再次连接失败,短路的持续时间就会几何级地增加。 (2)并发数过高的服务器。如果一个服务器的并发连接数过高,配置了AvailabilityFilteringRule规则的客户端也会将其忽略。并发连接数的上限,可以由客户端的..ActiveConnectionsLimit属性进行配置。
WeightedResponseTimeRule 为每一个服务器赋予一个权重值。服务器响应时间越长,这个服务器的权重就越小。这个规则会随机选择服务器,这个权重值会影响服务器的选择。
ZoneAvoidanceRule 以区域可用的服务器为基础进行服务器的选择。使用Zone对服务器进行分类,这个Zone可以理解为一个机房、一个机架等。而后再对Zone内的多个服务做轮询。
BestAvailableRule 忽略那些短路的服务器,并选择并发数较低的服务器。
RandomRule 随机选择一个可用的服务器。
RetryRule 重试机制的选择逻辑

默认的实现就是ZoneAvoidanceRule,是一种轮询方案

自定义负载均衡策略

通过定义IRule实现可以修改负载均衡规则,有两种方式:

  1. 代码方式:在order-service中的OrderApplication类中,定义一个新的IRule:
1
2
3
4
@Bean
public IRule randomRule(){
return new RandomRule();
}
  1. 配置文件方式:在order-service的application.yml文件中,添加新的配置也可以修改规则:
1
2
3
userservice: # 给某个微服务配置负载均衡规则,这里是userservice服务
ribbon:
NFLoadBalancerRuleClassName: com.netflix.loadbalancer.RandomRule # 负载均衡规则

注意,一般用默认的负载均衡规则,不做修改。

饥饿加载

Ribbon默认是采用懒加载,即第一次访问时才会去创建LoadBalanceClient,请求时间会很长。

而饥饿加载则会在项目启动时创建,降低第一次访问的耗时,通过下面配置开启饥饿加载:

1
2
3
4
ribbon:
eager-load:
enabled: true
clients: userservice

Nacos注册中心

认识和安装Nacos

国内公司一般都推崇阿里巴巴的技术,比如注册中心,SpringCloudAlibaba也推出了一个名为Nacos的注册中心。

Nacos是阿里巴巴的产品,现在是SpringCloud中的一个组件。相比Eureka功能更加丰富,在国内受欢迎程度较高。

image-20240904141534270

windows安装

开发阶段采用单机安装即可。

下载安装包

在Nacos的GitHub页面,提供有下载链接,可以下载编译好的Nacos服务端或者源代码:

GitHub主页:https://github.com/alibaba/nacos

GitHub的Release下载页:https://github.com/alibaba/nacos/releases

如图:

image-20240904143009060

解压

将这个包解压到任意非中文目录下,如图:

image-20240904143032367

目录说明:

  • bin:启动脚本
  • conf:配置文件

端口配置

Nacos的默认端口是8848,如果你电脑上的其它进程占用了8848端口,请先尝试关闭该进程。

如果无法关闭占用8848端口的进程,也可以进入nacos的conf目录,修改配置文件中的端口:

image-20240904143051174

修改其中的内容:

image-20240904143100033

启动

启动非常简单,进入bin目录,结构如下:

image-20240904143111850

然后执行命令即可:

  • windows命令:
1
.\startup.cmd -m standalone

执行后的效果如图:

image-20240904143142962

访问

在浏览器输入地址:http://127.0.0.1:8848/nacos即可:

image-20240904143155289

默认的账号和密码都是nacos,进入后:

image-20240904143204862

服务注册到nacos

Nacos是SpringCloudAlibaba的组件,而SpringCloudAlibaba也遵循SpringCloud中定义的服务注册、服务发现规范。因此使用Nacos和使用Eureka对于微服务来说,并没有太大区别。

主要差异在于:

  • 依赖不同
  • 服务地址不同

引入依赖

在cloud-demo父工程的pom文件中的<dependencyManagement>中引入SpringCloudAlibaba的依赖:

1
2
3
4
5
6
7
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-alibaba-dependencies</artifactId>
<version>2.2.6.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>

然后在user-service和order-service中的pom文件中引入nacos-discovery依赖:

1
2
3
4
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
</dependency>

注意:不要忘了注释掉eureka的依赖。

配置nacos地址

在user-service和order-service的application.yml中添加nacos地址:

1
2
3
4
spring:
cloud:
nacos:
server-addr: localhost:8848

注意:不要忘了注释掉eureka的地址

重启

重启微服务后,登录nacos管理页面,可以看到微服务信息:

image-20240904144507853

服务分级存储模型

一个服务可以有多个实例,例如我们的user-service,可以有:

  • 127.0.0.1:8081
  • 127.0.0.1:8082
  • 127.0.0.1:8083

假如这些实例分布于全国各地的不同机房,例如:

  • 127.0.0.1:8081,在上海机房
  • 127.0.0.1:8082,在上海机房
  • 127.0.0.1:8083,在杭州机房

Nacos就将同一机房内的实例 划分为一个集群

也就是说,user-service是服务,一个服务可以包含多个集群,如杭州、上海,每个集群下可以有多个实例,形成分级模型,如图:

image-20240904150156636

微服务互相访问时,应该尽可能访问同集群实例,因为本地访问速度更快。当本集群内不可用时,才访问其它集群。例如:

image-20240904150220394

杭州机房内的order-service应该优先访问同机房的user-service。

给user-service配置集群

修改user-service的application.yml文件,添加集群配置:

1
2
3
4
5
6
spring:
cloud:
nacos:
server-addr: localhost:8848
discovery:
cluster-name: HB # 集群名称

重启两个user-service实例后,我们可以在nacos控制台看到下面结果:

image-20240904150333034

我们再次复制一个user-service启动配置,添加属性:

1
-Dserver.port=8083 -Dspring.cloud.nacos.discovery.cluster-name=BJ

配置如图所示:

image-20240904150444377

启动UserApplication3后再次查看nacos控制台:

image-20240904150537133

同集群优先的负载均衡

默认的ZoneAvoidanceRule并不能实现根据同集群优先来实现负载均衡。

因此Nacos中提供了一个NacosRule的实现,可以优先从同集群中挑选实例。

1、给order-service配置集群信息

修改order-service的application.yml文件,添加集群配置:

1
2
3
4
5
6
spring:
cloud:
nacos:
server-addr: localhost:8848
discovery:
cluster-name: HZ # 集群名称

2、修改负载均衡规则

修改order-service的application.yml文件,修改负载均衡规则:

1
2
3
userservice:
ribbon:
NFLoadBalancerRuleClassName: com.alibaba.cloud.nacos.ribbon.NacosRule # 负载均衡规则

也可以用用过bean注入的方式修改

1
2
3
4
@Bean
public IRule nacosRule() {
return new NacosRule();
}

权重配置

实际部署中会出现这样的场景:

服务器设备性能有差异,部分实例所在机器性能较好,另一些较差,我们希望性能好的机器承担更多的用户请求。

但默认情况下NacosRule是同集群内随机挑选,不会考虑机器的性能问题。

因此,Nacos提供了权重配置来控制访问频率,权重越大则访问频率越高。

在nacos控制台,找到user-service的实例列表,点击编辑,即可修改权重:

image-20240904154138140

在弹出的编辑窗口,修改权重:

image-20240904154150204

注意:如果权重修改为0,则该实例永远不会被访问

环境隔离

Nacos提供了namespace来实现环境隔离功能。

  • nacos中可以有多个namespace
  • namespace下可以有group、service等
  • 不同namespace之间相互隔离,例如不同namespace的服务互相不可见

image-20240904155032634

创建namespace

默认情况下,所有service、data、group都在同一个namespace,名为public:

image-20240904155112439

我们可以点击页面新增按钮,添加一个namespace:

image-20240904155121162

然后,填写表单:

image-20240904155130913

就能在页面看到一个新的namespace:

image-20240904155141061

给微服务配置namespace

给微服务配置namespace只能通过修改配置来实现。

例如,修改order-service的application.yml文件:

1
2
3
4
5
6
7
spring:
cloud:
nacos:
server-addr: localhost:8848
discovery:
cluster-name: HZ
namespace: 492a7d5d-237b-46a1-a99a-fa8e98e4b0f9 # 命名空间,填ID

重启order-service后,访问控制台,可以看到下面的结果:
image-20240904155216914

image-20240904155229542

此时访问order-service,因为namespace不同,会导致找不到userservice,控制台会报错:

image-20240904155242665

image-20240904155304737

Nacos与Eureka的区别

Nacos的服务实例分为两种l类型:

  • 临时实例:如果实例宕机超过一定时间,会从服务列表剔除,默认的类型。
  • 非临时实例:如果实例宕机,不会从服务列表剔除,也可以叫永久实例。

配置一个服务实例为永久实例:

1
2
3
4
5
spring:
cloud:
nacos:
discovery:
ephemeral: false # 设置为非临时实例

Nacos和Eureka整体结构类似,服务注册、服务拉取、心跳等待,但是也存在一些差异:

image-20240904160608937

  • Nacos与eureka的共同点

    • 都支持服务注册和服务拉取
    • 都支持服务提供者心跳方式做健康检测
  • Nacos与Eureka的区别

    • Nacos支持服务端主动检测提供者状态:临时实例采用心跳模式,非临时实例采用主动检测模式
    • 临时实例心跳不正常会被剔除,非临时实例则不会被剔除
    • Nacos支持服务列表变更的消息推送模式,服务列表更新更及时
    • Nacos集群默认采用AP方式,当集群中存在非临时实例时,采用CP模式;Eureka采用AP方式

Nacos配置管理

Nacos除了可以做注册中心,同样可以做配置管理来使用。

统一配置管理

当微服务部署的实例越来越多,达到数十、数百时,逐个修改微服务配置就会让人抓狂,而且很容易出错。我们需要一种统一配置管理方案,可以集中管理所有实例的配置。

image-20240905150336617

Nacos一方面可以将配置集中管理,另一方可以在配置变更时,及时通知微服务,实现配置的热更新。

在nacos中添加配置文件

如何在nacos中管理配置呢?

image-20240905150359482

然后在弹出的表单中,填写配置信息:

image-20240905150421804

注意:项目的核心配置,需要热更新的配置才有放到nacos管理的必要。基本不会变更的一些配置还是保存在微服务本地比较好。

从微服务拉取配置

微服务要拉取nacos中管理的配置,并且与本地的application.yml配置合并,才能完成项目启动。

但如果尚未读取application.yml,又如何得知nacos地址呢?

因此spring引入了一种新的配置文件:bootstrap.yaml文件,会在application.yml之前被读取,流程如下:

image-20240905150451965

引入nacos-config依赖

首先,在user-service服务中,引入nacos-config的客户端依赖:

1
2
3
4
5
<!--nacos配置管理依赖-->
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId>
</dependency>

添加bootstrap.yaml

然后,在user-service中添加一个bootstrap.yaml文件,内容如下:

1
2
3
4
5
6
7
8
9
10
spring:
application:
name: userservice # 服务名称
profiles:
active: dev #开发环境,这里是dev
cloud:
nacos:
server-addr: localhost:8848 # Nacos地址
config:
file-extension: yaml # 文件后缀名

这里会根据spring.cloud.nacos.server-addr获取nacos地址,再根据

${spring.application.name}-${spring.profiles.active}.${spring.cloud.nacos.config.file-extension}作为文件id,来读取配置。

本例中,就是去读取userservice-dev.yaml

image-20240905150538758

读取nacos配置

在user-service中的UserController中添加业务逻辑,读取pattern.dateformat配置:

image-20240905150559897

完整代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
package cn.itcast.user.web;

import cn.itcast.user.pojo.User;
import cn.itcast.user.service.UserService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.*;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

@Slf4j
@RestController
@RequestMapping("/user")
public class UserController {

@Autowired
private UserService userService;

@Value("${pattern.dateformat}")
private String dateformat;

@GetMapping("now")
public String now(){
return LocalDateTime.now().format(DateTimeFormatter.ofPattern(dateformat));
}
// ...略
}

在页面访问,可以看到效果:

image-20240905150637379

配置热更新

我们最终的目的,是修改nacos中的配置后,微服务中无需重启即可让配置生效,也就是配置热更新

要实现配置热更新,可以使用两种方式:

@Value + @RefreshScope

在@Value注入的变量所在类上添加注解@RefreshScope:

image-20240905153306147

@ConfigurationPropeties

使用@ConfigurationProperties注解代替@Value注解。

在user-service服务中,添加一个类,读取patterrn.dateformat属性:

1
2
3
4
5
6
7
8
9
10
11
12
package cn.itcast.user.config;

import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.stereotype.Component;

@Component
@Data
@ConfigurationProperties(prefix = "pattern")
public class PatternProperties {
private String dateformat;
}

在UserController中使用这个类代替@Value:

image-20240905153429196

完整代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
package cn.itcast.user.web;

import cn.itcast.user.config.PatternProperties;
import cn.itcast.user.pojo.User;
import cn.itcast.user.service.UserService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

@Slf4j
@RestController
@RequestMapping("/user")
public class UserController {

@Autowired
private UserService userService;

@Autowired
private PatternProperties patternProperties;

@GetMapping("now")
public String now(){
return LocalDateTime.now().format(DateTimeFormatter.ofPattern(patternProperties.getDateformat()));
}

// 略
}

配置共享

其实微服务启动时,会去nacos读取多个配置文件,例如:

  • [spring.application.name]-[spring.profiles.active].yaml,例如:userservice-dev.yaml

  • [spring.application.name].yaml,例如:userservice.yaml

[spring.application.name].yaml不包含环境,因此可以被多个环境共享。

下面我们通过案例来测试配置共享

添加一个环境共享配置

我们在nacos中添加一个userservice.yaml文件:

image-20240905154843588

在user-service中读取共享配置

在user-service服务中,修改PatternProperties类,读取新添加的属性:

image-20240905154901481

在user-service服务中,修改UserController,添加一个方法:

image-20240905154914237

运行两个UserApplication,使用不同的profile

修改UserApplication2这个启动项,改变其profile值:

image-20240905154932957

image-20240905155000648

这样,UserApplication(8081)使用的profile是dev,UserApplication2(8082)使用的profile是test。

启动UserApplication和UserApplication2

访问http://localhost:8081/user/prop,结果:

image-20240905155014610

访问http://localhost:8082/user/prop,结果:

image-20240905155026099

可以看出来,不管是dev,还是test环境,都读取到了envSharedValue这个属性的值。

配置共享的优先级

当nacos、服务本地同时出现相同属性时,优先级有高低之分:

image-20240905155045146

搭建Nacos集群

集群结构图

官方给出的Nacos集群图:

image-20240905161339279

其中包含3个nacos节点,然后一个负载均衡器代理3个Nacos。这里负载均衡器可以使用nginx。

我们计划的集群结构:

image-20240905161416683

三个nacos节点的地址:

节点 ip port
nacos1 192.168.150.1 8845
nacos2 192.168.150.1 8846
nacos3 192.168.150.1 8847

搭建集群

搭建集群的基本步骤:

  • 搭建数据库,初始化数据库表结构
  • 下载nacos安装包
  • 配置nacos
  • 启动nacos集群
  • nginx反向代理

初始化数据库

Nacos默认数据存储在内嵌数据库Derby中,不属于生产可用的数据库。

官方推荐的最佳实践是使用带有主从的高可用数据库集群,主从模式的高可用数据库可以参考传智教育的后续高手课程。

这里我们以单点的数据库为例来讲解。

首先新建一个数据库,命名为nacos,而后导入下面的SQL:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
CREATE TABLE `config_info` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'id',
`data_id` varchar(255) NOT NULL COMMENT 'data_id',
`group_id` varchar(255) DEFAULT NULL,
`content` longtext NOT NULL COMMENT 'content',
`md5` varchar(32) DEFAULT NULL COMMENT 'md5',
`gmt_create` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`gmt_modified` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '修改时间',
`src_user` text COMMENT 'source user',
`src_ip` varchar(50) DEFAULT NULL COMMENT 'source ip',
`app_name` varchar(128) DEFAULT NULL,
`tenant_id` varchar(128) DEFAULT '' COMMENT '租户字段',
`c_desc` varchar(256) DEFAULT NULL,
`c_use` varchar(64) DEFAULT NULL,
`effect` varchar(64) DEFAULT NULL,
`type` varchar(64) DEFAULT NULL,
`c_schema` text,
PRIMARY KEY (`id`),
UNIQUE KEY `uk_configinfo_datagrouptenant` (`data_id`,`group_id`,`tenant_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='config_info';

/******************************************/
/* 数据库全名 = nacos_config */
/* 表名称 = config_info_aggr */
/******************************************/
CREATE TABLE `config_info_aggr` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'id',
`data_id` varchar(255) NOT NULL COMMENT 'data_id',
`group_id` varchar(255) NOT NULL COMMENT 'group_id',
`datum_id` varchar(255) NOT NULL COMMENT 'datum_id',
`content` longtext NOT NULL COMMENT '内容',
`gmt_modified` datetime NOT NULL COMMENT '修改时间',
`app_name` varchar(128) DEFAULT NULL,
`tenant_id` varchar(128) DEFAULT '' COMMENT '租户字段',
PRIMARY KEY (`id`),
UNIQUE KEY `uk_configinfoaggr_datagrouptenantdatum` (`data_id`,`group_id`,`tenant_id`,`datum_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='增加租户字段';


/******************************************/
/* 数据库全名 = nacos_config */
/* 表名称 = config_info_beta */
/******************************************/
CREATE TABLE `config_info_beta` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'id',
`data_id` varchar(255) NOT NULL COMMENT 'data_id',
`group_id` varchar(128) NOT NULL COMMENT 'group_id',
`app_name` varchar(128) DEFAULT NULL COMMENT 'app_name',
`content` longtext NOT NULL COMMENT 'content',
`beta_ips` varchar(1024) DEFAULT NULL COMMENT 'betaIps',
`md5` varchar(32) DEFAULT NULL COMMENT 'md5',
`gmt_create` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`gmt_modified` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '修改时间',
`src_user` text COMMENT 'source user',
`src_ip` varchar(50) DEFAULT NULL COMMENT 'source ip',
`tenant_id` varchar(128) DEFAULT '' COMMENT '租户字段',
PRIMARY KEY (`id`),
UNIQUE KEY `uk_configinfobeta_datagrouptenant` (`data_id`,`group_id`,`tenant_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='config_info_beta';

/******************************************/
/* 数据库全名 = nacos_config */
/* 表名称 = config_info_tag */
/******************************************/
CREATE TABLE `config_info_tag` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'id',
`data_id` varchar(255) NOT NULL COMMENT 'data_id',
`group_id` varchar(128) NOT NULL COMMENT 'group_id',
`tenant_id` varchar(128) DEFAULT '' COMMENT 'tenant_id',
`tag_id` varchar(128) NOT NULL COMMENT 'tag_id',
`app_name` varchar(128) DEFAULT NULL COMMENT 'app_name',
`content` longtext NOT NULL COMMENT 'content',
`md5` varchar(32) DEFAULT NULL COMMENT 'md5',
`gmt_create` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`gmt_modified` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '修改时间',
`src_user` text COMMENT 'source user',
`src_ip` varchar(50) DEFAULT NULL COMMENT 'source ip',
PRIMARY KEY (`id`),
UNIQUE KEY `uk_configinfotag_datagrouptenanttag` (`data_id`,`group_id`,`tenant_id`,`tag_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='config_info_tag';

/******************************************/
/* 数据库全名 = nacos_config */
/* 表名称 = config_tags_relation */
/******************************************/
CREATE TABLE `config_tags_relation` (
`id` bigint(20) NOT NULL COMMENT 'id',
`tag_name` varchar(128) NOT NULL COMMENT 'tag_name',
`tag_type` varchar(64) DEFAULT NULL COMMENT 'tag_type',
`data_id` varchar(255) NOT NULL COMMENT 'data_id',
`group_id` varchar(128) NOT NULL COMMENT 'group_id',
`tenant_id` varchar(128) DEFAULT '' COMMENT 'tenant_id',
`nid` bigint(20) NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`nid`),
UNIQUE KEY `uk_configtagrelation_configidtag` (`id`,`tag_name`,`tag_type`),
KEY `idx_tenant_id` (`tenant_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='config_tag_relation';

/******************************************/
/* 数据库全名 = nacos_config */
/* 表名称 = group_capacity */
/******************************************/
CREATE TABLE `group_capacity` (
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键ID',
`group_id` varchar(128) NOT NULL DEFAULT '' COMMENT 'Group ID,空字符表示整个集群',
`quota` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '配额,0表示使用默认值',
`usage` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '使用量',
`max_size` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '单个配置大小上限,单位为字节,0表示使用默认值',
`max_aggr_count` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '聚合子配置最大个数,,0表示使用默认值',
`max_aggr_size` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '单个聚合数据的子配置大小上限,单位为字节,0表示使用默认值',
`max_history_count` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '最大变更历史数量',
`gmt_create` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`gmt_modified` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '修改时间',
PRIMARY KEY (`id`),
UNIQUE KEY `uk_group_id` (`group_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='集群、各Group容量信息表';

/******************************************/
/* 数据库全名 = nacos_config */
/* 表名称 = his_config_info */
/******************************************/
CREATE TABLE `his_config_info` (
`id` bigint(64) unsigned NOT NULL,
`nid` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
`data_id` varchar(255) NOT NULL,
`group_id` varchar(128) NOT NULL,
`app_name` varchar(128) DEFAULT NULL COMMENT 'app_name',
`content` longtext NOT NULL,
`md5` varchar(32) DEFAULT NULL,
`gmt_create` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
`gmt_modified` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
`src_user` text,
`src_ip` varchar(50) DEFAULT NULL,
`op_type` char(10) DEFAULT NULL,
`tenant_id` varchar(128) DEFAULT '' COMMENT '租户字段',
PRIMARY KEY (`nid`),
KEY `idx_gmt_create` (`gmt_create`),
KEY `idx_gmt_modified` (`gmt_modified`),
KEY `idx_did` (`data_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='多租户改造';


/******************************************/
/* 数据库全名 = nacos_config */
/* 表名称 = tenant_capacity */
/******************************************/
CREATE TABLE `tenant_capacity` (
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键ID',
`tenant_id` varchar(128) NOT NULL DEFAULT '' COMMENT 'Tenant ID',
`quota` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '配额,0表示使用默认值',
`usage` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '使用量',
`max_size` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '单个配置大小上限,单位为字节,0表示使用默认值',
`max_aggr_count` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '聚合子配置最大个数',
`max_aggr_size` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '单个聚合数据的子配置大小上限,单位为字节,0表示使用默认值',
`max_history_count` int(10) unsigned NOT NULL DEFAULT '0' COMMENT '最大变更历史数量',
`gmt_create` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`gmt_modified` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '修改时间',
PRIMARY KEY (`id`),
UNIQUE KEY `uk_tenant_id` (`tenant_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='租户容量信息表';


CREATE TABLE `tenant_info` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'id',
`kp` varchar(128) NOT NULL COMMENT 'kp',
`tenant_id` varchar(128) default '' COMMENT 'tenant_id',
`tenant_name` varchar(128) default '' COMMENT 'tenant_name',
`tenant_desc` varchar(256) DEFAULT NULL COMMENT 'tenant_desc',
`create_source` varchar(32) DEFAULT NULL COMMENT 'create_source',
`gmt_create` bigint(20) NOT NULL COMMENT '创建时间',
`gmt_modified` bigint(20) NOT NULL COMMENT '修改时间',
PRIMARY KEY (`id`),
UNIQUE KEY `uk_tenant_info_kptenantid` (`kp`,`tenant_id`),
KEY `idx_tenant_id` (`tenant_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='tenant_info';

CREATE TABLE `users` (
`username` varchar(50) NOT NULL PRIMARY KEY,
`password` varchar(500) NOT NULL,
`enabled` boolean NOT NULL
);

CREATE TABLE `roles` (
`username` varchar(50) NOT NULL,
`role` varchar(50) NOT NULL,
UNIQUE INDEX `idx_user_role` (`username` ASC, `role` ASC) USING BTREE
);

CREATE TABLE `permissions` (
`role` varchar(50) NOT NULL,
`resource` varchar(255) NOT NULL,
`action` varchar(8) NOT NULL,
UNIQUE INDEX `uk_role_permission` (`role`,`resource`,`action`) USING BTREE
);

INSERT INTO users (username, password, enabled) VALUES ('nacos', '$2a$10$EuWPZHzz32dJN7jexM34MOeYirDdFAZm2kuWj7VEOJhhZkDrxfvUu', TRUE);

INSERT INTO roles (username, role) VALUES ('nacos', 'ROLE_ADMIN');

下载nacos

nacos在GitHub上有下载地址:https://github.com/alibaba/nacos/tags,可以选择任意版本下载。

本例中才用1.4.1版本:

image-20240905161504930

配置Nacos

将这个包解压到任意非中文目录下,如图:

image-20240905161516290

目录说明:

  • bin:启动脚本
  • conf:配置文件

进入nacos的conf目录,修改配置文件cluster.conf.example,重命名为cluster.conf:

image-20240905161529057

然后添加内容:

1
2
3
127.0.0.1:8845
127.0.0.1.8846
127.0.0.1.8847

然后修改application.properties文件,添加数据库配置

1
2
3
4
5
6
7
spring.datasource.platform=mysql

db.num=1

db.url.0=jdbc:mysql://127.0.0.1:3306/nacos?characterEncoding=utf8&connectTimeout=1000&socketTimeout=3000&autoReconnect=true&useUnicode=true&useSSL=false&serverTimezone=UTC
db.user.0=root
db.password.0=123

启动

将nacos文件夹复制三份,分别命名为:nacos1、nacos2、nacos3

image-20240905161612665

然后分别修改三个文件夹中的application.properties,

nacos1:

1
server.port=8845

nacos2:

1
server.port=8846

nacos3:

1
server.port=8847

然后分别启动三个nacos节点:

1
startup.cmd

nginx反向代理

下载nginx

image-20240905161728066

解压到任意非中文目录下:

image-20240905161733496

修改conf/nginx.conf文件,配置如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
upstream nacos-cluster {
server 127.0.0.1:8845;
server 127.0.0.1:8846;
server 127.0.0.1:8847;
}

server {
listen 80;
server_name localhost;

location /nacos {
proxy_pass http://nacos-cluster;
}
}

而后在浏览器访问:http://localhost/nacos即可。

代码中application.yml文件配置如下:

1
2
3
4
spring:
cloud:
nacos:
server-addr: localhost:80 # Nacos地址

Feign远程调用

先来看我们以前利用RestTemplate发起远程调用的代码:

image-20240909102236919

存在下面的问题:

•代码可读性差,编程体验不统一

•参数复杂URL难以维护

Feign是一个声明式的http客户端,官方地址:https://github.com/OpenFeign/feign

其作用就是帮助我们优雅的实现http请求的发送,解决上面提到的问题。

image-20240909102258024

Feign替代RestTemplate

Fegin的使用步骤如下:

引入依赖

我们在order-service服务的pom文件中引入feign的依赖:

1
2
3
4
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>

添加注解

在order-service的启动类添加注解开启Feign的功能:

image-20240909103107477

编写Feign的客户端

在order-service中新建一个接口,内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
package cn.itcast.order.client;

import cn.itcast.order.pojo.User;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;

@FeignClient("userservice")
public interface UserClient {
@GetMapping("/user/{id}")
User findById(@PathVariable("id") Long id);
}

这个客户端主要是基于SpringMVC的注解来声明远程调用的信息,比如:

  • 服务名称:userservice
  • 请求方式:GET
  • 请求路径:/user/{id}
  • 请求参数:Long id
  • 返回值类型:User

这样,Feign就可以帮助我们发送http请求,无需自己使用RestTemplate来发送了。

测试

修改order-service中的OrderService类中的queryOrderById方法,使用Feign客户端代替RestTemplate:

image-20240909103152595

总结

使用Feign的步骤:

① 引入依赖

② 添加@EnableFeignClients注解

③ 编写FeignClient接口

④ 使用FeignClient中定义的方法代替RestTemplate

自定义配置

Feign可以支持很多的自定义配置,如下表所示:

类型 作用 说明
feign.Logger.Level 修改日志级别 包含四种不同的级别:NONE、BASIC、HEADERS、FULL
feign.codec.Decoder 响应结果的解析器 http远程调用的结果做解析,例如解析json字符串为java对象
feign.codec.Encoder 请求参数编码 将请求参数编码,便于通过http请求发送
feign. Contract 支持的注解格式 默认是SpringMVC的注解
feign. Retryer 失败重试机制 请求失败的重试机制,默认是没有,不过会使用Ribbon的重试

一般情况下,默认值就能满足我们使用,如果要自定义时,只需要创建自定义的@Bean覆盖默认Bean即可。

下面以日志为例来演示如何自定义配置。

配置文件方式

基于配置文件修改feign的日志级别可以针对单个服务:

1
2
3
4
5
feign:  
client:
config:
userservice: # 针对某个微服务的配置
loggerLevel: FULL # 日志级别

也可以针对所有服务:

1
2
3
4
5
feign:  
client:
config:
default: # 这里用default就是全局配置,如果是写服务名称,则是针对某个微服务的配置
loggerLevel: FULL # 日志级别

而日志的级别分为四种:

  • NONE:不记录任何日志信息,这是默认值。
  • BASIC:仅记录请求的方法,URL以及响应状态码和执行时间
  • HEADERS:在BASIC的基础上,额外记录了请求和响应的头信息
  • FULL:记录所有请求和响应的明细,包括头信息、请求体、元数据。

Java代码方式

也可以基于Java代码来修改日志级别,先声明一个类,然后声明一个Logger.Level的对象:

1
2
3
4
5
6
public class DefaultFeignConfiguration  {
@Bean
public Logger.Level feignLogLevel(){
return Logger.Level.BASIC; // 日志级别为BASIC
}
}

如果要全局生效,将其放到启动类的@EnableFeignClients这个注解中:

1
@EnableFeignClients(defaultConfiguration = DefaultFeignConfiguration .class) 

如果是局部生效,则把它放到对应的@FeignClient这个注解中:

1
@FeignClient(value = "userservice", configuration = DefaultFeignConfiguration .class) 

Feign优化

Feign底层发起http请求,依赖于其它的框架。其底层客户端实现包括:

•URLConnection:默认实现,不支持连接池

•Apache HttpClient :支持连接池

•OKHttp:支持连接池

因此提高Feign的性能主要手段就是使用连接池代替默认的URLConnection。

这里用Apache的HttpClient来演示。

引入依赖

在order-service的pom文件中引入Apache的HttpClient依赖:

1
2
3
4
5
<!--httpClient的依赖 -->
<dependency>
<groupId>io.github.openfeign</groupId>
<artifactId>feign-httpclient</artifactId>
</dependency>

配置连接池

在order-service的application.yml中添加配置:

1
2
3
4
5
6
7
8
9
feign:
client:
config:
default: # default全局的配置
loggerLevel: BASIC # 日志级别,BASIC就是基本的请求和响应信息
httpclient:
enabled: true # 开启feign对HttpClient的支持
max-connections: 200 # 最大的连接数
max-connections-per-route: 50 # 每个路径的最大连接数

Feign的优化:

1.日志级别尽量用basic

2.使用HttpClient或OKHttp代替URLConnection

① 引入feign-httpClient依赖

② 配置文件开启httpClient功能,设置连接池参数

Feign的最佳实践

所谓最佳实践,就是使用过程中总结的经验,最好的一种使用方式。

自习观察可以发现,Feign的客户端与服务提供者的controller代码非常相似:

feign客户端:

image-20240909111533130

userController:

image-20240909111547624

有没有一种办法简化这种重复的代码编写呢?

继承方式

一样的代码可以通过继承来共享:

1)定义一个API接口,利用定义方法,并基于SpringMVC注解做声明。

2)Feign客户端和Controller都集成改接口

image-20240909111625256

优点:

  • 简单
  • 实现了代码共享

缺点:

  • 服务提供方、服务消费方紧耦合

  • 参数列表中的注解映射并不会继承,因此Controller中必须再次声明方法、参数列表、注解

抽取方式

将Feign的Client抽取为独立模块,并且把接口有关的POJO、默认的Feign配置都放到这个模块中,提供给所有消费者使用。

例如,将UserClient、User、Feign的默认配置都抽取到一个feign-api包中,所有微服务引用该依赖包,即可直接使用。

image-20240909111642617

实现基于抽取的最佳实践

抽取

首先创建一个module,命名为feign-api:

image-20240909111723993

项目结构:

image-20240909111732466

在feign-api中然后引入feign的starter依赖

1
2
3
4
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>

然后,order-service中编写的UserClient、User、DefaultFeignConfiguration都复制到feign-api项目中

image-20240909112757033

在order-service中使用feign-api

首先,删除order-service中的UserClient、User、DefaultFeignConfiguration等类或接口。

在order-service的pom文件中中引入feign-api的依赖:

1
2
3
4
5
<dependency>
<groupId>cn.itcast.demo</groupId>
<artifactId>feign-api</artifactId>
<version>1.0</version>
</dependency>

修改order-service中的所有与上述三个组件有关的导包部分,改成导入feign-api中的包

重启测试

重启后,发现服务报错了:

image-20240909112832391

这是因为UserClient现在在cn.itcast.feign.clients包下,

而order-service的@EnableFeignClients注解是在cn.itcast.order包下,不在同一个包,无法扫描到UserClient。

解决扫描包问题

方式一:

指定Feign应该扫描的包:

1
@EnableFeignClients(basePackages = "cn.itcast.feign.clients")

方式二:

指定需要加载的Client接口:

1
@EnableFeignClients(clients = {UserClient.class})

Gateway网关

Spring Cloud Gateway 是 Spring Cloud 的一个全新项目,该项目是基于 Spring 5.0,Spring Boot 2.0 和 Project Reactor 等响应式编程和事件流技术开发的网关,它旨在为微服务架构提供一种简单有效的统一的 API 路由管理方式。

为什么需要网关

Gateway网关是我们服务的守门神,所有微服务的统一入口。

网关的核心功能特性

  • 请求路由
  • 权限控制
  • 限流

架构图:

image-20240909140422890

权限控制:网关作为微服务入口,需要校验用户是是否有请求资格,如果没有则进行拦截。

路由和负载均衡:一切请求都必须先经过gateway,但网关不处理业务,而是根据某种规则,把请求转发到某个微服务,这个过程叫做路由。当然路由的目标服务有多个时,还需要做负载均衡。

限流:当请求流量过高时,在网关中按照下流的微服务能够接受的速度来放行请求,避免服务压力过大。

在SpringCloud中网关的实现包括两种:

  • gateway
  • zuul

Zuul是基于Servlet的实现,属于阻塞式编程。而SpringCloudGateway则是基于Spring5中提供的WebFlux,属于响应式编程的实现,具备更好的性能。

gateway快速入门

下面,我们就演示下网关的基本路由功能。基本步骤如下:

  1. 创建SpringBoot工程gateway,引入网关依赖
  2. 编写启动类
  3. 编写基础配置和路由规则
  4. 启动网关服务进行测试

创建gateway服务,引入依赖

创建服务:

image-20240909143047115

引入依赖

1
2
3
4
5
6
7
8
9
10
<!--网关-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-gateway</artifactId>
</dependency>
<!--nacos服务发现依赖-->
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
</dependency>

编写启动类

1
2
3
4
5
6
7
8
9
10
11
12
package cn.itcast.gateway;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class GatewayApplication {

public static void main(String[] args) {
SpringApplication.run(GatewayApplication.class, args);
}
}

编写基础配置和路由规则

创建application.yml文件,内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
server:
port: 10010 # 网关端口
spring:
application:
name: gateway # 服务名称
cloud:
nacos:
server-addr: localhost:8848 # nacos地址
gateway:
routes: # 网关路由配置
- id: user-service # 路由id,自定义,只要唯一即可
# uri: http://127.0.0.1:8081 # 路由的目标地址 http就是固定地址
uri: lb://userservice # 路由的目标地址 lb就是负载均衡,后面跟服务名称
predicates: # 路由断言,也就是判断请求是否符合路由规则的条件
- Path=/user/** # 这个是按照路径匹配,只要以/user/开头就符合要求

重启测试

重启网关,访问http://localhost:10010/user/1时,符合`/user/**`规则,请求转发到uri:http://userservice/user/1,得到了结果:

image-20240909143138739

网关路由的流程图

整个访问的流程如下:

image-20240909143152091

总结:

网关搭建步骤:

  1. 创建项目,引入nacos服务发现和gateway依赖

  2. 配置application.yml,包括服务基本信息、nacos地址、路由

路由配置包括:

  1. 路由id:路由的唯一标示

  2. 路由目标(uri):路由的目标地址,http代表固定地址,lb代表根据服务名负载均衡

  3. 路由断言(predicates):判断路由的规则,

  4. 路由过滤器(filters):对请求或响应做处理

断言工厂

我们在配置文件中写的断言规则只是字符串,这些字符串会被Predicate Factory读取并处理,转变为路由判断的条件

例如Path=/user/**是按照路径匹配,这个规则是由

org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory类来

处理的,像这样的断言工厂在SpringCloudGateway还有十几个:

名称 说明 示例
After 是某个时间点后的请求 - After=2037-01-20T17:42:47.789-07:00[America/Denver]
Before 是某个时间点之前的请求 - Before=2031-04-13T15:14:47.433+08:00[Asia/Shanghai]
Between 是某两个时间点之前的请求 - Between=2037-01-20T17:42:47.789-07:00[America/Denver], 2037-01-21T17:42:47.789-07:00[America/Denver]
Cookie 请求必须包含某些cookie - Cookie=chocolate, ch.p
Header 请求必须包含某些header - Header=X-Request-Id, \d+
Host 请求必须是访问某个host(域名) - Host=.somehost.org,.anotherhost.org
Method 请求方式必须是指定方式 - Method=GET,POST
Path 请求路径必须符合指定规则 - Path=/red/{segment},/blue/**
Query 请求参数必须包含指定参数 - Query=name, Jack或者- Query=name
RemoteAddr 请求者的ip必须是指定范围 - RemoteAddr=192.168.1.1/24
Weight 权重处理

我们只需要掌握Path这种路由工程就可以了。

过滤器工厂

GatewayFilter是网关中提供的一种过滤器,可以对进入网关的请求和微服务返回的响应做处理:

image-20240909150416555

路由过滤器的种类

Spring提供了31种不同的路由过滤器工厂。例如:

名称 说明
AddRequestHeader 给当前请求添加一个请求头
RemoveRequestHeader 移除请求中的一个请求头
AddResponseHeader 给响应结果中添加一个响应头
RemoveResponseHeader 从响应结果中移除有一个响应头
RequestRateLimiter 限制请求的流量

请求头过滤器

下面我们以AddRequestHeader 为例来讲解。

需求:给所有进入userservice的请求添加一个请求头:Truth=xxx is freaking awesome!

只需要修改gateway服务的application.yml文件,添加路由过滤即可:

1
2
3
4
5
6
7
8
9
10
spring:
cloud:
gateway:
routes:
- id: user-service
uri: lb://userservice
predicates:
- Path=/user/**
filters: # 过滤器
- AddRequestHeader=Truth, Itcast is freaking awesome! # 添加请求头

当前过滤器写在userservice路由下,因此仅仅对访问userservice的请求有效。

默认过滤器

如果要对所有的路由都生效,则可以将过滤器工厂写到default下。格式如下:

1
2
3
4
5
6
7
8
9
10
spring:
cloud:
gateway:
routes:
- id: user-service
uri: lb://userservice
predicates:
- Path=/user/**
default-filters: # 默认过滤项
- AddRequestHeader=Truth, Itcast is freaking awesome!

总结

过滤器的作用是什么?

① 对路由的请求或响应做加工处理,比如添加请求头

② 配置在路由下的过滤器只对当前路由的请求生效

defaultFilters的作用是什么?

① 对所有路由都生效的过滤器

全局过滤器

上一节学习的过滤器,网关提供了31种,但每一种过滤器的作用都是固定的。如果我们希望拦截请求,做自己的业务逻辑则没办法实现。

3.5.1.全局过滤器作用

全局过滤器的作用也是处理一切进入网关的请求和微服务响应,与GatewayFilter的作用一样。区别在于GatewayFilter通过配置定义,处理逻辑是固定的;而GlobalFilter的逻辑需要自己写代码实现。

定义方式是实现GlobalFilter接口。

1
2
3
4
5
6
7
8
9
10
public interface GlobalFilter {
/**
* 处理当前请求,有必要的话通过{@link GatewayFilterChain}将请求交给下一个过滤器处理
*
* @param exchange 请求上下文,里面可以获取Request、Response等信息
* @param chain 用来把请求委托给下一个过滤器
* @return {@code Mono<Void>} 返回标示当前过滤器业务结束
*/
Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain);
}

在filter中编写自定义逻辑,可以实现下列功能:

  • 登录状态判断
  • 权限校验
  • 请求限流等

自定义全局过滤器

需求:定义全局过滤器,拦截请求,判断请求的参数是否满足下面条件:

  • 参数中是否有authorization,

  • authorization参数值是否为admin

如果同时满足则放行,否则拦截

实现:

在gateway中定义一个过滤器:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package cn.itcast.gateway.filters;

import org.springframework.cloud.gateway.filter.GatewayFilterChain;
import org.springframework.cloud.gateway.filter.GlobalFilter;
import org.springframework.core.annotation.Order;
import org.springframework.http.HttpStatus;
import org.springframework.stereotype.Component;
import org.springframework.web.server.ServerWebExchange;
import reactor.core.publisher.Mono;

@Order(-1)
@Component
public class AuthorizeFilter implements GlobalFilter {
@Override
public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
// 1.获取请求参数
MultiValueMap<String, String> params = exchange.getRequest().getQueryParams();
// 2.获取authorization参数
String auth = params.getFirst("authorization");
// 3.校验
if ("admin".equals(auth)) {
// 放行
return chain.filter(exchange);
}
// 4.拦截
// 4.1.禁止访问,设置状态码
exchange.getResponse().setStatusCode(HttpStatus.FORBIDDEN);
// 4.2.结束处理
return exchange.getResponse().setComplete();
}
}

过滤器执行顺序

请求进入网关会碰到三类过滤器:当前路由的过滤器、DefaultFilter、GlobalFilter

请求路由后,会将当前路由过滤器和DefaultFilter、GlobalFilter,合并到一个过滤器链(集合)中,排序后依次执行每个过滤器:

image-20240909153445060

排序的规则是什么呢?

  • 每一个过滤器都必须指定一个int类型的order值,order值越小,优先级越高,执行顺序越靠前
  • GlobalFilter通过实现Ordered接口,或者添加@Order注解来指定order值,由我们自己指定
  • 路由过滤器和defaultFilter的order由Spring指定,默认是按照声明顺序从1递增。
  • 当过滤器的order值一样时,会按照 defaultFilter > 路由过滤器 > GlobalFilter的顺序执行。

详细内容,可以查看源码:

org.springframework.cloud.gateway.route.RouteDefinitionRouteLocator#getFilters()方法是先加载defaultFilters,然后再加载某个route的filters,然后合并。

org.springframework.cloud.gateway.handler.FilteringWebHandler#handle()方法会加载全局过滤器,与前面的过滤器合并后根据order排序,组织过滤器链

跨域问题

什么是跨域问题

跨域:域名不一致就是跨域,主要包括:

跨域问题:浏览器禁止请求的发起者与服务端发生跨域ajax请求,请求被浏览器拦截的问题

解决方案:CORS,这个以前应该学习过,这里不再赘述了。不知道的小伙伴可以查看https://www.ruanyifeng.com/blog/2016/04/cors.html

3.6.2.模拟跨域问题

创建一个html页面

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<title>Document</title>
</head>
<body>
<pre>
spring:
cloud:
gateway:
globalcors: # 全局的跨域处理
add-to-simple-url-handler-mapping: true # 解决options请求被拦截问题
corsConfigurations:
'[/**]':
allowedOrigins: # 允许哪些网站的跨域请求
- "http://localhost:8090"
- "http://www.leyou.com"
allowedMethods: # 允许的跨域ajax的请求方式
- "GET"
- "POST"
- "DELETE"
- "PUT"
- "OPTIONS"
allowedHeaders: "*" # 允许在请求中携带的头信息
allowCredentials: true # 是否允许携带cookie
maxAge: 360000 # 这次跨域检测的有效期
</pre>
</body>
<script src="https://unpkg.com/axios/dist/axios.min.js"></script>
<script>
axios.get("http://localhost:10010/user/1?authorization=admin")
.then(resp => console.log(resp.data))
.catch(err => console.log(err))
</script>
</html>

放入tomcat或者nginx这样的web服务器中,启动并访问。

可以在浏览器控制台看到下面的错误:

image-20240909154226064

从localhost:8090访问localhost:10010,端口不同,显然是跨域的请求。

解决跨域问题

在gateway服务的application.yml文件中,添加下面的配置:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
spring:
cloud:
gateway:
# 。。。
globalcors: # 全局的跨域处理
add-to-simple-url-handler-mapping: true # 解决options请求被拦截问题
corsConfigurations:
'[/**]':
allowedOrigins: # 允许哪些网站的跨域请求
- "http://localhost:8090"
allowedMethods: # 允许的跨域ajax的请求方式
- "GET"
- "POST"
- "DELETE"
- "PUT"
- "OPTIONS"
allowedHeaders: "*" # 允许在请求中携带的头信息
allowCredentials: true # 是否允许携带cookie
maxAge: 360000 # 这次跨域检测的有效期

Docker

初识Docker

什么是Docker

微服务虽然具备各种各样的优势,但服务的拆分通用给部署带来了很大的麻烦。

  • 分布式系统中,依赖的组件非常多,不同组件之间部署时往往会产生一些冲突。
  • 在数百上千台服务中重复部署,环境不一定一致,会遇到各种问题

应用部署的环境问题

大型项目组件较多,运行环境也较为复杂,部署时会碰到一些问题:

  • 依赖关系复杂,容易出现兼容性问题

  • 开发、测试、生产环境有差异

image-20240910083904514

例如一个项目中,部署时需要依赖于node.js、Redis、RabbitMQ、MySQL等,这些服务部署时所需要的函数库、依赖项各不相同,甚至会有冲突。给部署带来了极大的困难。

Docker解决依赖兼容问题

而Docker确巧妙的解决了这些问题,Docker是如何实现的呢?

Docker为了解决依赖的兼容问题的,采用了两个手段:

  • 将应用的Libs(函数库)、Deps(依赖)、配置与应用一起打包

  • 将每个应用放到一个隔离容器去运行,避免互相干扰

image-20240910083925011

这样打包好的应用包中,既包含应用本身,也保护应用所需要的Libs、Deps,无需再操作系统上安装这些,自然就不存在不同应用之间的兼容问题了。

虽然解决了不同应用的兼容问题,但是开发、测试等环境会存在差异,操作系统版本也会有差异,怎么解决这些问题呢?

Docker解决操作系统环境差异

要解决不同操作系统环境差异问题,必须先了解操作系统结构。以一个Ubuntu操作系统为例,结构如下:

image-20240910083939629

结构包括:

  • 计算机硬件:例如CPU、内存、磁盘等
  • 系统内核:所有Linux发行版的内核都是Linux,例如CentOS、Ubuntu、Fedora等。内核可以与计算机硬件交互,对外提供内核指令,用于操作计算机硬件。
  • 系统应用:操作系统本身提供的应用、函数库。这些函数库是对内核指令的封装,使用更加方便。

应用于计算机交互的流程如下:

1)应用调用操作系统应用(函数库),实现各种功能

2)系统函数库是对内核指令集的封装,会调用内核指令

3)内核指令操作计算机硬件

Ubuntu和CentOSpringBoot都是基于Linux内核,无非是系统应用不同,提供的函数库有差异:

image-20240910083956913

此时,如果将一个Ubuntu版本的MySQL应用安装到CentOS系统,MySQL在调用Ubuntu函数库时,会发现找不到或者不匹配,就会报错了:

image-20240910084006548

Docker如何解决不同系统环境的问题?

  • Docker将用户程序与所需要调用的系统(比如Ubuntu)函数库一起打包
  • Docker运行到不同操作系统时,直接基于打包的函数库,借助于操作系统的Linux内核来运行

如图:

image-20240910084018825

小结

Docker如何解决大型项目依赖关系复杂,不同组件依赖的兼容性问题?

  • Docker允许开发中将应用、依赖、函数库、配置一起打包,形成可移植镜像
  • Docker应用运行在容器中,使用沙箱机制,相互隔离

Docker如何解决开发、测试、生产环境有差异的问题?

  • Docker镜像中包含完整运行环境,包括系统函数库,仅依赖系统的Linux内核,因此可以在任意Linux操作系统上运行

Docker是一个快速交付应用、运行应用的技术,具备下列优势:

  • 可以将程序及其依赖、运行环境一起打包为一个镜像,可以迁移到任意Linux操作系统
  • 运行时利用沙箱机制形成隔离容器,各个应用互不干扰
  • 启动、移除都可以通过一行命令完成,方便快捷

Docker和虚拟机的区别

Docker可以让一个应用在任何操作系统中非常方便的运行。而以前我们接触的虚拟机,也能在一个操作系统中,运行另外一个操作系统,保护系统中的任何应用。

两者有什么差异呢?

虚拟机(virtual machine)是在操作系统中模拟硬件设备,然后运行另一个操作系统,比如在 Windows 系统里面运行 Ubuntu 系统,这样就可以运行任意的Ubuntu应用了。

Docker仅仅是封装函数库,并没有模拟完整的操作系统,如图:

image-20240910084339832

对比来看:

image-20240910084426542

小结:

Docker和虚拟机的差异:

  • docker是一个系统进程;虚拟机是在操作系统中的操作系统

  • docker体积小、启动速度快、性能好;虚拟机体积大、启动速度慢、性能一般

Docker架构

镜像和容器

Docker中有几个重要的概念:

镜像(Image):Docker将应用程序及其所需的依赖、函数库、环境、配置等文件打包在一起,称为镜像。

容器(Container):镜像中的应用程序运行后形成的进程就是容器,只是Docker会给容器进程做隔离,对外不可见。

一切应用最终都是代码组成,都是硬盘中的一个个的字节形成的文件。只有运行时,才会加载到内存,形成进程。

镜像,就是把一个应用在硬盘上的文件、及其运行环境、部分系统函数库文件一起打包形成的文件包。这个文件包是只读的。

容器呢,就是将这些文件中编写的程序、函数加载到内存中允许,形成进程,只不过要隔离起来。因此一个镜像可以启动多次,形成多个容器进程。

image-20240910085152158

例如你下载了一个QQ,如果我们将QQ在磁盘上的运行文件及其运行的操作系统依赖打包,形成QQ镜像。然后你可以启动多次,双开、甚至三开QQ,跟多个妹子聊天。

DockerHub

开源应用程序非常多,打包这些应用往往是重复的劳动。为了避免这些重复劳动,人们就会将自己打包的应用镜像,例如Redis、MySQL镜像放到网络上,共享使用,就像GitHub的代码共享一样。

  • DockerHub:DockerHub是一个官方的Docker镜像的托管平台。这样的平台称为Docker Registry。

  • 国内也有类似于DockerHub 的公开服务,比如 网易云镜像服务阿里云镜像库等。

我们一方面可以将自己的镜像共享到DockerHub,另一方面也可以从DockerHub拉取镜像:

image-20240910085248063

Docker架构

我们要使用Docker来操作镜像、容器,就必须要安装Docker。

Docker是一个CS架构的程序,由两部分组成:

  • 服务端(server):Docker守护进程,负责处理Docker指令,管理镜像、容器等

  • 客户端(client):通过命令或RestAPI向Docker服务端发送指令。可以在本地或远程向服务端发送指令。

如图:

image-20240910085308743

小结

镜像:

  • 将应用程序及其依赖、环境、配置打包在一起

容器:

  • 镜像运行起来就是容器,一个镜像可以运行多个容器

Docker结构:

  • 服务端:接收命令或远程请求,操作镜像或容器

  • 客户端:发送命令或者请求到Docker服务端

DockerHub:

  • 一个镜像托管的服务器,类似的还有阿里云镜像服务,统称为DockerRegistry

Docker安装

详见笔记Docker.md

Docker基本操作

镜像操作

镜像名称

首先来看下镜像的名称组成:

  • 镜名称一般分两部分组成:[repository]:[tag]。
  • 在没有指定tag时,默认是latest,代表最新版本的镜像

如图:

image-20240910092305066

这里的mysql就是repository,5.7就是tag,合一起就是镜像名称,代表5.7版本的MySQL镜像。

镜像命令

常见的镜像操作命令如图:

image-20240910092323794

拉取、查看镜像

从DockerHub中拉取一个nginx镜像并查看

  1. 镜像仓库搜索nginx镜像,如:DockerHUB

image-20240910092502186

  1. 根据查看到的镜像名称,拉取自己需要的镜像,通过命令:docker pull nginx

    image-20240910092522350

  2. 通过命令:docker images 查看拉取到的镜像

    image-20240910092539900

保存、导入镜像

利用docker save将nginx镜像导出磁盘,然后再通过load加载回来

  1. 利用docker xx –help命令查看docker save和docker load的语法
1
2
# 查看save命令的用法
docker save --help

image-20240910092659731

命令格式:

1
docker save -o [保存的目标文件名称] [镜像名称]
  1. 使用docker save导出镜像到磁盘

    1
    dicker save -o nginx.tar nginx:latest

    image-20240910092753242

  2. 使用docker load加载镜像

先删除本地的nginx镜像:

1
docker rmi nginx:latest

加载本地文件:

1
docker load -i nginx.tar

image-20240910092835706

容器操作

容器相关命令

容器操作的命令如图:

image-20240910093505663

容器保护三个状态:

  • 运行:进程正常运行
  • 暂停:进程暂停,CPU不再运行,并不释放内存
  • 停止:进程终止,回收进程占用的内存、CPU等资源

其中:

  • docker run:创建并运行一个容器,处于运行状态

  • docker pause:让一个运行的容器暂停

  • docker unpause:让一个容器从暂停状态恢复运行

  • docker stop:停止一个运行的容器

  • docker start:让一个停止的容器再次运行

  • docker rm:删除一个容器

创建并运行一个容器

创建并运行nginx容器的命令:

1
docker run --name containerName -p 80:80 -d nginx

命令解读:

  • docker run :创建并运行一个容器
  • –name : 给容器起一个名字,比如叫做mn
  • -p :将宿主机端口与容器端口映射,冒号左侧是宿主机端口,右侧是容器端口
  • -d:后台运行容器
  • nginx:镜像名称,例如nginx

这里的-p参数,是将容器端口映射到宿主机端口。

默认情况下,容器是隔离环境,我们直接访问宿主机的80端口,肯定访问不到容器中的nginx。

现在,将容器的80与宿主机的80关联起来,当我们访问宿主机的80端口时,就会被映射到容器的80,这样就能访问到nginx了:

image-20240910094744532

进入容器修改文件

进入Nginx容器,修改HTML文件内容,添加“nginx欢迎您”

  1. 进入容器。进入我们刚刚创建的nginx容器的命令为:
1
docker exec -it mn bash

命令解读:

  • docker exec :进入容器内部,执行一个命令

  • -it : 给当前进入的容器创建一个标准输入、输出终端,允许我们与容器交互

  • mn :要进入的容器的名称

  • bash:进入容器后执行的命令,bash是一个linux终端交互命令

  1. 进入nginx的HTML所在目录 /usr/share/nginx/html

容器内部会模拟一个独立的Linux文件系统,看起来如同一个linux服务器一样:

image-20240910095124826

nginx的环境、配置、运行文件全部都在这个文件系统中,包括我们要修改的html文件。

查看DockerHub网站中的nginx页面,可以知道nginx的html目录位置在/usr/share/nginx/html

我们执行命令,进入该目录:

1
cd /usr/share/nginx/html

查看目录下文件:

image-20240910095150892

  1. 修改index.html的内容

容器内没有vi命令,无法直接修改,我们用下面的命令来修改:

1
sed -i -e 's#Welcome to nginx#nginx欢迎您#g' -e 's#<head>#<head><meta charset="utf-8">#g' index.html

在浏览器访问自己的虚拟机地址,例如我的是:http://192.168.88.155:81,即可看到结果:

image-20240910095235860

小结

docker run命令的常见参数有哪些?

  • –name:指定容器名称
  • -p:指定端口映射
  • -d:让容器后台运行

查看容器日志的命令:

  • docker logs
  • 添加 -f 参数可以持续查看日志

查看容器状态:

  • docker ps
  • docker ps -a 查看所有容器,包括已经停止的

数据卷(容器数据管理)

在之前的nginx案例中,修改nginx的html页面时,需要进入nginx内部。并且因为没有编辑器,修改文件也很麻烦。

这就是因为容器与数据(容器内文件)耦合带来的后果。

image-20240910104110188

要解决这个问题,必须将数据与容器解耦,这就要用到数据卷了。

什么是数据卷

数据卷(volume)是一个虚拟目录,指向宿主机文件系统中的某个目录。

image-20240910104122601

一旦完成数据卷挂载,对容器的一切操作都会作用在数据卷对应的宿主机目录了。

这样,我们操作宿主机的/var/lib/docker/volumes/html目录,就等于操作容器内的/usr/share/nginx/html目录了

数据集操作命令

数据卷操作的基本语法如下:

1
docker volume [COMMAND]

docker volume命令是数据卷操作,根据命令后跟随的command来确定下一步的操作:

  • create 创建一个volume
  • inspect 显示一个或多个volume的信息
  • ls 列出所有的volume
  • prune 删除未使用的volume
  • rm 删除一个或多个指定的volume

创建和查看数据卷

需求:创建一个数据卷,并查看数据卷在宿主机的目录位置

① 创建数据卷

1
docker volume create 数据卷名

② 查看数据卷

1
docker volume ls

结果:

image-20240910104325692

③ 查看数据卷详细信息卷

1
docker volume inspect fds

image-20240910104432150

小结

数据卷的作用:

  • 将容器与数据分离,解耦合,方便操作容器内数据,保证数据安全

数据卷操作:

  • docker volume create:创建数据卷
  • docker volume ls:查看所有数据卷
  • docker volume inspect:查看数据卷详细信息,包括关联的宿主机目录位置
  • docker volume rm:删除指定数据卷
  • docker volume prune:删除所有未使用的数据卷

挂载数据卷

我们在创建容器时,可以通过 -v 参数来挂载一个数据卷到某个容器内目录,命令格式如下:

1
2
3
4
5
docker run \
--name mn \
-v html:/root/html \
-p 8080:80
nginx \

这里的-v就是挂载数据卷的命令:

  • -v html:/root/htm :把html数据卷挂载到容器内的/root/html这个目录中

给nginx挂载数据卷

需求:创建一个nginx容器,修改容器内的html目录内的index.html内容

① 创建容器并挂载数据卷到容器内的HTML目录

1
docker volume create html

② 进入html数据卷所在位置,并修改html的内容

1
2
3
4
5
6
# 查看html数据卷的位置
docker volume inspect html
# 进入该目录
cd /var/lib/docker/volumes/html/_data
# 修改文件
vi index.html

Dockerfile自定义镜像

常见的镜像在DockerHub就能找到,但是我们自己写的项目就必须自己构建镜像了。

而要自定义镜像,就必须先了解镜像的结构才行。

镜像结构

镜像是将应用程序及其需要的系统函数库、环境、配置、依赖打包而成。

我们以MySQL为例,来看看镜像的组成结构:

image-20240910141338341

简单来说,镜像就是在系统函数库、运行环境基础上,添加应用程序文件、配置文件、依赖文件等组合,然后编写好启动脚本打包在一起形成的文件。

我们要构建镜像,其实就是实现上述打包的过程。

Dockerfile语法

构建自定义的镜像时,并不需要一个个文件去拷贝,打包。

我们只需要告诉Docker,我们的镜像的组成,需要哪些BaseImage、需要拷贝什么文件、需要安装什么依赖、启动脚本是什么,将来Docker会帮助我们构建镜像。

而描述上述信息的文件就是Dockerfile文件。

Dockerfile就是一个文本文件,其中包含一个个的**指令(Instruction)**,用指令来说明要执行什么操作来构建镜像。每一个指令都会形成一层Layer。

image-20240910141404932

更新详细语法说明,请参考官网文档: https://docs.docker.com/engine/reference/builder

构建Java项目

基于Ubuntu构建Java项目

需求:基于Ubuntu镜像构建一个新镜像,运行一个java项目

  • 步骤1:新建一个空文件夹docker-demo

image-20240910141437239

  • 步骤2:拷贝课前资料中的docker-demo.jar文件到docker-demo这个目录

image-20240910141449086

  • 步骤3:拷贝课前资料中的jdk8.tar.gz文件到docker-demo这个目录

image-20240910141459663

  • 步骤4:拷贝课前资料提供的Dockerfile到docker-demo这个目录

image-20240910141510167

其中的内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# 指定基础镜像
FROM ubuntu:16.04
# 配置环境变量,JDK的安装目录
ENV JAVA_DIR=/usr/local

# 拷贝jdk和java项目的包
COPY ./jdk8.tar.gz $JAVA_DIR/
COPY ./docker-demo.jar /tmp/app.jar

# 安装JDK
RUN cd $JAVA_DIR \
&& tar -xf ./jdk8.tar.gz \
&& mv ./jdk1.8.0_144 ./java8

# 配置环境变量
ENV JAVA_HOME=$JAVA_DIR/java8
ENV PATH=$PATH:$JAVA_HOME/bin

# 暴露端口
EXPOSE 8090
# 入口,java项目的启动命令
ENTRYPOINT java -jar /tmp/app.jar
  • 步骤5:进入docker-demo

    将准备好的docker-demo上传到虚拟机任意目录,然后进入docker-demo目录下

  • 步骤6:运行命令:

    1
    docker build -t javaweb:1.0 .

最后访问 http://192.168.150.101:8090/hello/count,其中的ip改成你的虚拟机ip

基于java8构建Java项目

虽然我们可以基于Ubuntu基础镜像,添加任意自己需要的安装包,构建镜像,但是却比较麻烦。所以大多数情况下,我们都可以在一些安装了部分软件的基础镜像上做改造。

例如,构建java项目的镜像,可以在已经准备了JDK的基础镜像基础上构建。

需求:基于java:8-alpine镜像,将一个Java项目构建为镜像

实现思路如下:

  • ① 新建一个空的目录,然后在目录中新建一个文件,命名为Dockerfile

  • ② 拷贝课前资料提供的docker-demo.jar到这个目录中

  • ③ 编写Dockerfile文件:

    • a )基于java:8-alpine作为基础镜像

    • b )将app.jar拷贝到镜像中

    • c )暴露端口

    • d )编写入口ENTRYPOINT

      内容如下:

      1
      2
      3
      4
      FROM java:8-alpine
      COPY ./app.jar /tmp/app.jar
      EXPOSE 8090
      ENTRYPOINT java -jar /tmp/app.jar
    • ④ 使用docker build命令构建镜像

    • ⑤ 使用docker run创建容器并运行

小结

小结:

  1. Dockerfile的本质是一个文件,通过指令描述镜像的构建过程

  2. Dockerfile的第一行必须是FROM,从一个基础镜像来构建

  3. 基础镜像可以是基本操作系统,如Ubuntu。也可以是其他人制作好的镜像,例如:java:8-alpine

DockerCompose

Docker Compose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器!

image-20240910142530618

初识DockerCompose

Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。格式如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
version: "3.8"
services:
  mysql:
    image: mysql:5.7.25
environment:
MYSQL_ROOT_PASSWORD: 123
    volumes:
     - "/tmp/mysql/data:/var/lib/mysql"
     - "/tmp/mysql/conf/hmy.cnf:/etc/mysql/conf.d/hmy.cnf"
  web:
    build: .
    ports:
     - "8090:8090"

上面的Compose文件就描述一个项目,其中包含两个容器:

  • mysql:一个基于mysql:5.7.25镜像构建的容器,并且挂载了两个目录
  • web:一个基于docker build临时构建的镜像容器,映射端口时8090

DockerCompose的详细语法参考官网:https://docs.docker.com/compose/compose-file/

其实DockerCompose文件可以看做是将多个docker run命令写到一个文件,只是语法稍有差异。

安装DockerCompose

下载

Linux下需要通过命令下载:

Linux下需要通过命令下载:

1
2
# 安装
curl -L https://github.com/docker/compose/releases/download/1.23.1/docker-compose-`uname -s`-`uname -m` > /usr/local/bin/docker-compose

如果下载速度较慢,或者下载失败,可以使用课前资料提供的docker-compose文件:

image-20240910142701657

上传到/usr/local/bin/目录也可以。

修改文件权限

修改文件权限:

1
2
# 修改权限
chmod +x /usr/local/bin/docker-compose

Base自动补全命令

1
2
# 补全命令
curl -L https://raw.githubusercontent.com/docker/compose/1.29.1/contrib/completion/bash/docker-compose > /etc/bash_completion.d/docker-compose

如果这里出现错误,需要修改自己的hosts文件:

1
echo "199.232.68.133 raw.githubusercontent.com" >> /etc/hosts

部署微服务集群

需求:将之前学习的cloud-demo微服务集群利用DockerCompose部署

实现思路

① 查看课前资料提供的cloud-demo文件夹,里面已经编写好了docker-compose文件

② 修改自己的cloud-demo项目,将数据库、nacos地址都命名为docker-compose中的服务名

③ 使用maven打包工具,将项目中的每个微服务都打包为app.jar

④ 将打包好的app.jar拷贝到cloud-demo中的每一个对应的子目录中

⑤ 将cloud-demo上传至虚拟机,利用 docker-compose up -d 来部署

compose文件

查看课前资料提供的cloud-demo文件夹,里面已经编写好了docker-compose文件,而且每个微服务都准备了一个独立的目录:

image-20240910154712026

内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
version: "3.2"

services:
nacos:
image: nacos/nacos-server
environment:
MODE: standalone
ports:
- "8848:8848"
mysql:
image: mysql:5.7.25
environment:
MYSQL_ROOT_PASSWORD: 123
volumes:
- "$PWD/mysql/data:/var/lib/mysql"
- "$PWD/mysql/conf:/etc/mysql/conf.d/"
userservice:
build: ./user-service
orderservice:
build: ./order-service
gateway:
build: ./gateway
ports:
- "10010:10010"

可以看到,其中包含5个service服务:

  • nacos:作为注册中心和配置中心
    • image: nacos/nacos-server: 基于nacos/nacos-server镜像构建
    • environment:环境变量
      • MODE: standalone:单点模式启动
    • ports:端口映射,这里暴露了8848端口
  • mysql:数据库
    • image: mysql:5.7.25:镜像版本是mysql:5.7.25
    • environment:环境变量
      • MYSQL_ROOT_PASSWORD: 123:设置数据库root账户的密码为123
    • volumes:数据卷挂载,这里挂载了mysql的data、conf目录,其中有我提前准备好的数据
  • userserviceorderservicegateway:都是基于Dockerfile临时构建的

查看mysql目录,可以看到其中已经准备好了cloud_order、cloud_user表:

image-20240910154740009

查看微服务目录,可以看到都包含Dockerfile文件:

image-20240910154748798

内容如下:

1
2
3
FROM java:8-alpine
COPY ./app.jar /tmp/app.jar
ENTRYPOINT java -jar /tmp/app.jar

修改微服务配置

因为微服务将来要部署为docker容器,而容器之间互联不是通过IP地址,而是通过容器名。这里我们将order-service、user-service、gateway服务的mysql、nacos地址都修改为基于容器名的访问。

如下所示:

1
2
3
4
5
6
7
8
9
10
11
spring:
datasource:
url: jdbc:mysql://mysql:3306/cloud_order?useSSL=false
username: root
password: 123
driver-class-name: com.mysql.jdbc.Driver
application:
name: orderservice
cloud:
nacos:
server-addr: nacos:8848 # nacos服务地址

打包

接下来需要将我们的每个微服务都打包。因为之前查看到Dockerfile中的jar包名称都是app.jar,因此我们的每个微服务都需要用这个名称。

可以通过修改pom.xml中的打包名称来实现,每个微服务都需要修改:

1
2
3
4
5
6
7
8
9
10
<build>
<!-- 服务打包的最终名称 -->
<finalName>app</finalName>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

打包后:

image-20240910154830741

拷贝jar包到部署目录

编译打包好的app.jar文件,需要放到Dockerfile的同级目录中。注意:每个微服务的app.jar放到与服务名称对应的目录,别搞错了。

user-service:

image-20240910154840219

order-service:

image-20240910154847691

gateway:

image-20240910154900130

部署

最后,我们需要将文件整个cloud-demo文件夹上传到虚拟机中,理由DockerCompose部署。

上传到任意目录:

image-20240910154909818

部署:

进入cloud-demo目录,然后运行下面的命令:

1
docker-compose up -d

Docker镜像仓库

搭建镜像仓库可以基于Docker官方提供的DockerRegistry来实现。

官网地址:https://hub.docker.com/_/registry

搭建私有镜像仓库

简化版镜像仓库

Docker官方的Docker Registry是一个基础版本的Docker镜像仓库,具备仓库管理的完整功能,但是没有图形化界面。

搭建方式比较简单,命令如下:

1
2
3
4
5
6
docker run -d \
--restart=always \
--name registry \
-p 5000:5000 \
-v registry-data:/var/lib/registry \
registry

命令中挂载了一个数据卷registry-data到容器内的/var/lib/registry 目录,这是私有镜像库存放数据的目录。

访问http://YourIp:5000/v2/_catalog 可以查看当前私有镜像服务中包含的镜像

带有图形化界面版本

使用DockerCompose部署带有图象界面的DockerRegistry,命令如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
version: '3.0'
services:
registry:
image: registry
volumes:
- ./registry-data:/var/lib/registry
ui:
image: joxit/docker-registry-ui:static
ports:
- 8080:80
environment:
- REGISTRY_TITLE=传智教育私有仓库
- REGISTRY_URL=http://registry:5000
depends_on:
- registry

配置Docker信任地址

我们的私服采用的是http协议,默认不被Docker信任,所以需要做一个配置:

1
2
3
4
5
6
7
8
# 打开要修改的文件
vi /etc/docker/daemon.json
# 添加内容:
"insecure-registries":["http://192.168.150.101:8080"]
# 重加载
systemctl daemon-reload
# 重启docker
systemctl restart docker

推送拉去镜像

推送镜像到私有镜像服务必须先tag,步骤如下:

① 重新tag本地镜像,名称前缀为私有仓库的地址:192.168.150.101:8080/

1
docker tag nginx:latest 192.168.150.101:8080/nginx:1.0 

② 推送镜像

1
docker push 192.168.150.101:8080/nginx:1.0 

③ 拉取镜像

1
docker pull 192.168.150.101:8080/nginx:1.0 

RabbitMQ

初识MQ

同步和异步通讯

微服务间通讯有同步和异步两种方式:

同步通讯:就像打电话,需要实时响应。

异步通讯:就像发邮件,不需要马上回复。

image-20240911083734981

两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与多个人收发邮件,但是往往响应会有延迟。

同步通讯

我们之前学习的Feign调用就属于同步方式,虽然调用可以实时得到结果,但存在下面的问题:

image-20240911083802989

总结:

同步调用的优点:

  • 时效性较强,可以立即得到结果

同步调用的问题:

  • 耦合度高
  • 性能和吞吐能力下降
  • 有额外的资源消耗
  • 有级联失败问题

异步通讯

异步调用则可以避免上述问题:

我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响应的库存并准备发货。

在事件模式中,支付服务是事件发布者(publisher),在支付完成后只需要发布一个支付成功的事件(event),事件中带上订单id。

订单服务和物流服务是事件订阅者(Consumer),订阅支付成功的事件,监听到事件后完成自己业务即可。

为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。

image-20240911083824898

Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线就像协议一样,让服务间的通讯变得标准和可控。

好处:

  • 吞吐量提升:无需等待订阅者处理完成,响应更快速

  • 故障隔离:服务没有直接调用,不存在级联失败问题

  • 调用间没有阻塞,不会造成无效的资源占用

  • 耦合度极低,每个服务都可以灵活插拔,可替换

  • 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件

缺点:

  • 架构复杂了,业务没有明显的流程线,不好管理
  • 需要依赖于Broker的可靠、安全、性能

技术对比

MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。

比较常见的MQ实现:

  • ActiveMQ
  • RabbitMQ
  • RocketMQ
  • Kafka

几种常见MQ的对比:

RabbitMQ ActiveMQ RocketMQ Kafka
公司/社区 Rabbit Apache 阿里 Apache
开发语言 Erlang Java Java Scala&Java
协议支持 AMQP,XMPP,SMTP,STOMP OpenWire,STOMP,REST,XMPP,AMQP 自定义协议 自定义协议
可用性 一般
单机吞吐量 一般 非常高
消息延迟 微秒级 毫秒级 毫秒级 毫秒以内
消息可靠性 一般 一般

追求可用性:Kafka、 RocketMQ 、RabbitMQ

追求可靠性:RabbitMQ、RocketMQ

追求吞吐能力:RocketMQ、Kafka

追求消息低延迟:RabbitMQ、Kafka

快速入门

安装RabbitMQ

单机部署

我们在Centos7虚拟机中使用Docker来安装。

下载镜像

方式一:在线拉取

1
docker pull rabbitmq:3-management

方式二:从本地加载

…….

上传到虚拟机中后,使用命令加载镜像即可:

1
docker load -i mq.tar
安装MQ

执行下面的命令来运行MQ容器:

1
2
3
4
5
6
7
8
9
docker run \
-e RABBITMQ_DEFAULT_USER=raehp \ # 账号
-e RABBITMQ_DEFAULT_PASS=123456 \ # 密码
--name mq \ # 别名
--hostname mq1 \ # 主机名(集群使用)
-p 15672:15672 \
-p 5672:5672 \
-d \
rabbitmq:3-management

集群部署

接下来,我们看看如何安装RabbitMQ的集群。

集群分类

在RabbitMQ的官方文档中,讲述了两种集群的配置方式:

  • 普通模式:普通模式集群不进行数据同步,每个MQ都有自己的队列、数据信息(其它元数据信息如交换机等会同步)。例如我们有2个MQ:mq1,和mq2,如果你的消息在mq1,而你连接到了mq2,那么mq2会去mq1拉取消息,然后返回给你。如果mq1宕机,消息就会丢失。
  • 镜像模式:与普通模式不同,队列会在各个mq的镜像节点之间同步,因此你连接到任何一个镜像节点,均可获取到消息。而且如果一个节点宕机,并不会导致数据丢失。不过,这种方式增加了数据同步的带宽消耗。

我们先来看普通模式集群。

设置网络

首先,我们需要让3台MQ互相知道对方的存在。

分别在3台机器中,设置 /etc/hosts文件,添加如下内容:

1
2
3
192.168.150.101 mq1
192.168.150.102 mq2
192.168.150.103 mq3

并在每台机器上测试,是否可以ping通对方:

MQ基本结构

image-20240911090841480

RabbitMQ中的一些角色:

  • publisher:生产者
  • consumer:消费者
  • exchange个:交换机,负责消息路由
  • queue:队列,存储消息
  • virtualHost:虚拟主机,隔离不同租户的exchange、queue、消息的隔离

RabbitMQ消息模型

RabbitMQ官方提供了5个不同的Demo示例,对应了不同的消息模型:

image-20240911091151094

入门案例

简单队列模式的模型图:

image-20240911093638728

官方的HelloWorld是基于最基础的消息队列模型来实现的,只包括三个角色:

  • publisher:消息发布者,将消息发送到队列queue
  • queue:消息队列,负责接受并缓存消息
  • consumer:订阅队列,处理队列中的消息

publisher实现

思路:

  • 建立连接
  • 创建Channel
  • 声明队列
  • 发送消息
  • 关闭连接和channel

代码实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
package cn.itcast.mq.helloworld;

import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import org.junit.Test;

import java.io.IOException;
import java.util.concurrent.TimeoutException;

public class PublisherTest {
@Test
public void testSendMessage() throws IOException, TimeoutException {
// 1.建立连接
ConnectionFactory factory = new ConnectionFactory();
// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码
factory.setHost("192.168.150.101");
factory.setPort(5672);
factory.setVirtualHost("/");
factory.setUsername("itcast");
factory.setPassword("123321");
// 1.2.建立连接
Connection connection = factory.newConnection();

// 2.创建通道Channel
Channel channel = connection.createChannel();

// 3.创建队列
String queueName = "simple.queue";
channel.queueDeclare(queueName, false, false, false, null);

// 4.发送消息
String message = "hello, rabbitmq!";
channel.basicPublish("", queueName, null, message.getBytes());
System.out.println("发送消息成功:【" + message + "】");

// 5.关闭通道和连接
channel.close();
connection.close();

}
}

consumer实现

代码思路:

  • 建立连接
  • 创建Channel
  • 声明队列
  • 订阅消息

代码实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
package cn.itcast.mq.helloworld;

import com.rabbitmq.client.*;

import java.io.IOException;
import java.util.concurrent.TimeoutException;

public class ConsumerTest {

public static void main(String[] args) throws IOException, TimeoutException {
// 1.建立连接
ConnectionFactory factory = new ConnectionFactory();
// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码
factory.setHost("192.168.150.101");
factory.setPort(5672);
factory.setVirtualHost("/");
factory.setUsername("itcast");
factory.setPassword("123321");
// 1.2.建立连接
Connection connection = factory.newConnection();

// 2.创建通道Channel
Channel channel = connection.createChannel();

// 3.创建队列
String queueName = "simple.queue";
channel.queueDeclare(queueName, false, false, false, null);

// 4.订阅消息
channel.basicConsume(queueName, true, new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope,
AMQP.BasicProperties properties, byte[] body) throws IOException {
// 5.处理消息
String message = new String(body);
System.out.println("接收到消息:【" + message + "】");
}
});
System.out.println("等待接收消息。。。。");
}
}

总结

基本消息队列的消息发送流程:

  1. 建立connection

  2. 创建channel

  3. 利用channel声明队列

  4. 利用channel向队列发送消息

基本消息队列的消息接收流程:

  1. 建立connection

  2. 创建channel

  3. 利用channel声明队列

  4. 定义consumer的消费行为handleDelivery()

  5. 利用channel将消费者与队列绑定

SpringAMQP

SpringAMQP是基于RabbitMQ封装的一套模板,并且还利用SpringBoot对其实现了自动装配,使用起来非常方便。

SpringAmqp的官方地址:https://spring.io/projects/spring-amqp

image-20210717164024967

image-20210717164024967

SpringAMQP提供了三个功能:

  • 自动声明队列、交换机及其绑定关系
  • 基于注解的监听器模式,异步接收消息
  • 封装了RabbitTemplate工具,用于发送消息

Basic Queue 简单队列模型

在父工程mq-demo中引入依赖

1
2
3
4
5
<!--AMQP依赖,包含RabbitMQ-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

消息发送

首先配置MQ地址,在publisher服务的application.yml中添加配置:

1
2
3
4
5
6
7
spring:
rabbitmq:
host: 192.168.150.101 # 主机名
port: 5672 # 端口
virtual-host: / # 虚拟主机
username: itcast # 用户名
password: 123321 # 密码

然后在publisher服务中编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
package cn.itcast.mq.spring;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringAmqpTest {

@Autowired
private RabbitTemplate rabbitTemplate;

@Test
public void testSimpleQueue() {
// 队列名称
String queueName = "simple.queue";
// 消息
String message = "这是使用RabbitTemplate发送的消息!";
// 发送消息
rabbitTemplate.convertAndSend(queueName, message);
}
}

消息接收

首先配置MQ地址,在consumer服务的application.yml中添加配置:

1
2
3
4
5
6
7
spring:
rabbitmq:
host: 192.168.150.101 # 主机名
port: 5672 # 端口
virtual-host: / # 虚拟主机
username: itcast # 用户名
password: 123321 # 密码

然后在consumer服务的cn.itcast.mq.listener包中新建一个类SpringRabbitListener,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
package cn.itcast.mq.listener;

import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;

@Component
public class SpringRabbitListener {

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueueMessage(String msg) throws InterruptedException {
System.out.println("spring 消费者接收到消息:【" + msg + "】");
}
}

测试

启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息

image-20240911101032379

WorkQueue

Work queues,也被称为(Task queues),任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息

image-20240911103037599

当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。

此时就可以使用work 模型,多个消费者共同处理消息处理,速度就能大大提高了。

消息发送

这次我们循环发送,模拟大量消息堆积现象。

在publisher服务中的SpringAmqpTest类中添加一个测试方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/**
* workQueue
* 向队列中不停发送消息,模拟消息堆积。
*/
@Test
public void testWorkQueue() throws InterruptedException {
// 队列名称
String queueName = "simple.queue";
// 消息
String message = "hello, message_";
for (int i = 0; i < 50; i++) {
// 发送消息
rabbitTemplate.convertAndSend(queueName, message + i);
Thread.sleep(20);
}
}

消息接收

要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:

1
2
3
4
5
6
7
8
9
10
11
@RabbitListener(queues = "simple.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {
System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());
Thread.sleep(20);
}

@RabbitListener(queues = "simple.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {
System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());
Thread.sleep(200);
}

注意到这个消费者sleep了1000秒,模拟任务耗时。

测试

启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。

可以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。

也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。

能者多劳

在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:

1
2
3
4
5
spring:
rabbitmq:
listener:
simple:
prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息

总结

Work模型的使用:

  • 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理
  • 通过设置prefetch来控制消费者预取的消息数量

发布/订阅

发布订阅的模型如图:

image-20240911103615193

可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:

  • Publisher:生产者,也就是要发送消息的程序,但是不再发送到队列中,而是发给X(交换机)
  • Exchange:交换机,图中的X。一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange有以下3种类型:
    • Fanout:广播,将消息交给所有绑定到交换机的队列
    • Direct:定向,把消息交给符合指定routing key 的队列
    • Topic:通配符,把消息交给符合routing pattern(路由模式) 的队列
  • Consumer:消费者,与以前一样,订阅队列,没有变化
  • Queue:消息队列也与以前一样,接收消息、缓存消息。

Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!

Fanout

Fanout,英文翻译是扇出,我觉得在MQ中叫广播更合适。

image-20240911105717455

在广播模式下,消息发送流程是这样的:

  • 1) 可以有多个队列
  • 2) 每个队列都要绑定到Exchange(交换机)
  • 3) 生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定
  • 4) 交换机把消息发送给绑定过的所有队列
  • 5) 订阅队列的消费者都能拿到消息

我们的计划是这样的:

  • 创建一个交换机 itcast.fanout,类型是Fanout
  • 创建两个队列fanout.queue1和fanout.queue2,绑定到交换机itcast.fanout

image-20240911105730483

声明队列和交换机

Spring提供了一个接口Exchange,来表示所有不同类型的交换机:

image-20240911105755239

在consumer中创建一个类,声明队列和交换机:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
package cn.itcast.mq.config;

import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.FanoutExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class FanoutConfig {
/**
* 声明交换机
* @return Fanout类型交换机
*/
@Bean
public FanoutExchange fanoutExchange(){
return new FanoutExchange("itcast.fanout");
}

/**
* 第1个队列
*/
@Bean
public Queue fanoutQueue1(){
return new Queue("fanout.queue1");
}

/**
* 绑定队列和交换机
*/
@Bean
public Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){
return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);
}

/**
* 第2个队列
*/
@Bean
public Queue fanoutQueue2(){
return new Queue("fanout.queue2");
}

/**
* 绑定队列和交换机
*/
@Bean
public Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){
return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);
}
}

消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

1
2
3
4
5
6
7
8
@Test
public void testFanoutExchange() {
// 队列名称
String exchangeName = "itcast.fanout";
// 消息
String message = "hello, everyone!";
rabbitTemplate.convertAndSend(exchangeName, "", message);
}

消息接收

在consumer服务的SpringRabbitListener中添加两个方法,作为消费者:

1
2
3
4
5
6
7
8
9
@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg) {
System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}

@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg) {
System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}

总结

交换机的作用是什么?

  • 接收publisher发送的消息
  • 将消息按照规则路由到与之绑定的队列
  • 不能缓存消息,路由失败,消息丢失
  • FanoutExchange的会将消息路由到每个绑定的队列

声明队列、交换机、绑定关系的Bean是什么?

  • Queue
  • FanoutExchange
  • Binding

Direct

在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。

image-20240911105847643

在Direct模型下:

  • 队列与交换机的绑定,不能是任意绑定了,而是要指定一个RoutingKey(路由key)
  • 消息的发送方在 向 Exchange发送消息时,也必须指定消息的 RoutingKey
  • Exchange不再把消息交给每一个绑定的队列,而是根据消息的Routing Key进行判断,只有队列的Routingkey与消息的 Routing key完全一致,才会接收到消息

案例需求如下

  1. 利用@RabbitListener声明Exchange、Queue、RoutingKey

  2. 在consumer服务中,编写两个消费者方法,分别监听direct.queue1和direct.queue2

  3. 在publisher中编写测试方法,向itcast. direct发送消息

image-20240911111614963

基于注解声明队列和交换机

基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。

在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "direct.queue1"),
exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),
key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){
System.out.println("消费者接收到direct.queue1的消息:【" + msg + "】");
}

@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "direct.queue2"),
exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),
key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){
System.out.println("消费者接收到direct.queue2的消息:【" + msg + "】");
}

消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

1
2
3
4
5
6
7
8
9
@Test
public void testSendDirectExchange() {
// 交换机名称
String exchangeName = "itcast.direct";
// 消息
String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";
// 发送消息
rabbitTemplate.convertAndSend(exchangeName, "red", message);
}

总结

描述下Direct交换机与Fanout交换机的差异?

  • Fanout交换机将消息路由给每一个与之绑定的队列
  • Direct交换机根据RoutingKey判断路由给哪个队列
  • 如果多个队列具有相同的RoutingKey,则与Fanout功能类似

基于@RabbitListener注解声明队列和交换机有哪些常见注解?

  • @Queue
  • @Exchange

Topic

Topic类型的ExchangeDirect相比,都是可以根据RoutingKey把消息路由到不同的队列。只不过Topic类型Exchange可以让队列在绑定Routing key 的时候使用通配符!

Routingkey 一般都是有一个或多个单词组成,多个单词之间以”.”分割,例如: item.insert

通配符规则:

#:匹配一个或多个词

*:匹配不多不少恰好1个词

举例:

item.#:能够匹配item.spu.insert 或者 item.spu

item.*:只能匹配item.spu

图示:

image-20240911113057176

解释:

  • Queue1:绑定的是china.# ,因此凡是以 china.开头的routing key 都会被匹配到。包括china.news和china.weather
  • Queue2:绑定的是#.news ,因此凡是以 .news结尾的 routing key 都会被匹配。包括china.news和japan.news

案例需求:

实现思路如下:

  1. 并利用@RabbitListener声明Exchange、Queue、RoutingKey

  2. 在consumer服务中,编写两个消费者方法,分别监听topic.queue1和topic.queue2

  3. 在publisher中编写测试方法,向itcast. topic发送消息

image-20240911113107636

消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

1
2
3
4
5
6
7
8
9
10
11
12
/**
* topicExchange
*/
@Test
public void testSendTopicExchange() {
// 交换机名称
String exchangeName = "itcast.topic";
// 消息
String message = "喜报!孙悟空大战哥斯拉,胜!";
// 发送消息
rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
}

消息接收

在consumer服务的SpringRabbitListener中添加方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "topic.queue1"),
exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC),
key = "china.#"
))
public void listenTopicQueue1(String msg){
System.out.println("消费者接收到topic.queue1的消息:【" + msg + "】");
}

@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "topic.queue2"),
exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC),
key = "#.news"
))
public void listenTopicQueue2(String msg){
System.out.println("消费者接收到topic.queue2的消息:【" + msg + "】");
}

总结

描述下Direct交换机与Topic交换机的差异?

  • Topic交换机接收的消息RoutingKey必须是多个单词,以 **.** 分割
  • Topic交换机与队列绑定时的bindingKey可以指定通配符
  • #:代表0个或多个词
  • *:代表1个词

消息转换器

测试默认转换器

我们修改消息发送的代码,发送一个Map对象:

1
2
3
4
5
6
7
8
9
@Test
public void testSendMap() throws InterruptedException {
// 准备消息
Map<String,Object> msg = new HashMap<>();
msg.put("name", "Jack");
msg.put("age", 21);
// 发送消息
rabbitTemplate.convertAndSend("simple.queue","", msg);
}

发送消息后查看控制台:

image-20240911135022137

配置JSON转换器

显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。

在publisher和consumer两个服务中都引入依赖:

1
2
3
4
5
<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupId>
<artifactId>jackson-dataformat-xml</artifactId>
<version>2.9.10</version>
</dependency>

配置消息转换器。

在启动类中添加一个Bean即可:

1
2
3
4
@Bean
public MessageConverter jsonMessageConverter(){
return new Jackson2JsonMessageConverter();
}